Unveiling the link between

Supermassive Black Holes and Galaxies

Cosmology talk @ Berkeley Sept. I 2015

Ai-Lei Sun

Princeton University, Advisor: Jenny Greene

Puzzles in Galaxy Evolutions

Suppressed Star Formation

-1.5log (Mstar/Mhalo) Moster et al. 2010 13 log Mhalo (Mo)

Black Hole Masses Correlate with Host Galaxies

Active Galactic Nuclei (AGN) Feedback

Silk & Rees 1998 Matteo et al. 2005 DeBuhr et al. 2011

Luminous AGN drive outflows

lonized outflows ~ 10 kpc

Gemini IFU, Liu+13

Molecular outflows < 1 kpc

Herschel OH 119 µm spectroscopy. Veilleux+13

Outline:

Part I: Multi-phase feedback prototype

Molecular Outflows in J1356 with ALMA

Part II: Is outflow common?

Ionized Outflows in Luminous Obscured Quasars

Part III: Explore a new population

Imaging Selection of Extended Outflows

Unobscured (Type-1) AGN

Obscured (Type-2) AGN

Part I: Multi-Phase Feedback Prototype

Molecular Outflows in J1356 with ALMA

Sun, Greene, Zakamska, & Nesvadba, ApJ (2014)

Part II: Is Outflow Common?

Part III: Explore a New Population

Multi-Phase Outflows in Obscured Quasar

SDSS J1356+1026, z=0.1, $L_{bol}\sim10^{46}$ erg/s

Molecular Gas with ALMA

ALMA cycle-0/cycle-1, resolution 1."9/0."35

CO Nuclear Spectrum

Outflow is AGN Driven

 \dot{E} outflow $\sim 3 \times 10^{43}$ erg/s

Constrains on star formation rate:

from FIR SED:

SFR $< 21 M_{\odot}/yr$ (conservative)

from molecular (KS-law):

SFR ~ 1 M_☉/yr

Star Formation Driven

If SFR = 21 M_{\odot}/yr

Ė supernova < Ė outflow

 $(<1.5\times10^{43} \text{ erg/s})$ $(3\times10^{43} \text{ erg/s})$

OR

AGN Driven

E_{outflow} ≈ 0.3% L_{bol}

 $P_{\text{outflow}} \approx 3 \text{ L}_{\text{bol}}/c$

Episodic AGN Feedback

Compact Molecular Outflow

 $r \approx 300 \text{ pc}$

 $t_{dyn} \approx 0.6 \text{ Myr}$

 $M \approx 7 \times 10^7 M_{\odot}$

Extended Ionized Outflow

 $r \approx 10 \text{ kpc}$

 $t_{dyn} \approx 10 Myr$

 $M \approx 5 \times 10^7 M_{\odot}$

Part I Summary:

- SDSS J1356+1026 is likely elliptical/disk merger triggering AGN feedback and multi-phase outflows
- The molecular outflow could deplete the molecular reservoir in ~ Myr.
- The molecular and ionized outflows are likely distinct events driven by AGN variability on a time scale of 10 Myr.

Capacity	Cycle-0/1	Full Capacity	
Antennae (12-m)	27	66	
Resolution [CO(3-2)]	0.35′′	0.035′′	

Accepted ALMA Cyc-3 Proposal for J1356 - Sun, Greene, and Zakamska

HCN to investigate the dense are and acceleration mechanism

HCN to investigate the dense gas and acceleration mechanism

Part I: Multi-phase feedback prototype

Part II: Is outflow common?

Ionized Outflows in Luminous Quasars

Sun et al. in prep

Part III: Explore a new population

Select Nearby Luminous Quasar

- 1. SDSS spectroscopically identified Mullaney+13
- 2. Nearby z < 0.2
- 3. Luminous $L_{bol} > 5 \times 10^{44}$ erg/s from [OIII] and WISE 22 μ m Luminosities
- 4. 13 Obscured (Type-2)9 Unobscured (Type-1)

0

High Velocity Outflows?

Outflows Sizes riso - isophoto size of [OIII] emitting region

Energy Efficiency

Part II Summary:

- Discovered two > 10 kpc extended outflows
- Beyond $L_{bol} \sim 10^{45}$ erg/s, most AGN drive ionized outflows
- Outflow size and energy depends smoothly on L_{bol}.
 No sign for an L_{bol} threshold for outflow.
- Feedback energy efficiency can be a constant.

Multi-Wavelength Follow-ups

SMA 2014B Accepted - 2 tracks

Sun and Greene

Detect CO (3-2) to search for molecular outflows

Chandra Cyc-17 Accepted - 27+39 ks

Pardo, Goulding, Greene, and Sun

Spatially resolve the X-ray emitting hot wind

Part I: Multi-phase feedback prototype

Part II: Is outflow common?

Part III: Explore a new population

Imaging Selection of Extended Outflows

work in progress...

Broadband Selection for Extended Outflows

SDSS Fiber Spectra

SDSS J1356+1026 z=0.1

SDSS J1000+1242 z=0.15

SDSS J1010+1413 z=0.20

20"×20"

SDSS Images

Magellan Spectrum

Interesting Objects from SDSS

Supperbubble?

- z=0.20, Lbol ~ $8*10^{45}$
- [OIII] size 8.5" ~ 28 kpc

Dual AGN?

- z=0.1, Lbol ~ $1*10^{45}$
- [OIII] size ~ 5.7" ~ 13 kpc

AGN Ionization Cone?

- z=0.15, Lbol ~ $5*10^{45}$
- [OIII] size ~ 5.0" ~ 13 kpc

Constraining [OIII] Size Distribution from SDSS

Part III Summary:

Broadband imaging subtraction can:

- constrain [OIII] nebula morphologies
- select extended [OIII] nebula outflow candidates
- measures R_{iso} distributions

Next Steps:

- Understand contaminations
- Predicting R_V from imaging Riso, SDSS spectrum [OIII] line width, and WISE

Subaru Hyper Suprime-Cam

- 8.2 m telescope × 2 deg² FoV
- Area: 1400 deg² (wide-layer)
- Depth: 26 mag
 (4-mag deeper than SDSS)
- Hundreds of extended nebula

SDSS-IV MaNGA

IFU spectroscopy survey

Capacity	SDSS	HSC	LSST
Depth (r-mag)	23	26	27.7
Area [deg ²]	15,000	1,400	20,000

- 10 years survey with six bands u, g, r, i z, y
- 6.7 m telescope × 9.6 deg² FoV

Take home messages:

- AGN outflows are multi-scaled and multi-phased, and can deplete star formation fuel in the galaxy.
- Most AGN beyond 10⁴⁵ erg/s drive ionized outflows
- Broadband imaging surveys open a new window for feedback studies

Future Directions

Imaging Survey

Spectroscopy Survey

Multi-Wavelength Follow-up

Thank you

